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ABSTRACT 

This study aims at the theoretical development of a method of “four-dimensional analysis,” namcly the numerical 
variational analysis. The three basic types of variational formalism in the nurncrical variational analysis method are 
discussed. The basic formalisms are categorized into three areas: (1) “timewise localized” formalism, ( 2 )  formalism 
with strong constraint, and (3) formalism with weak constraint. Exact satisfaction of selected prognostic equations 
were formulated as constraints in the functionals for the first two formalisms. However, only the second formalism 
contains explicitly the time variation terms in the Euler equations. Thc third formalism is characterized by thc 
subsidiary condition which requires that the prognostic or diagnostic equations must be approximately satisfied. 
The variational formalisms and the associated Euler-Lagrangc equations are obtained in the form of finite-difference 
analogs. I n  this article, the filtering of each formalism and the uniqueness of solutions of the Euler equations are 
discussed for a limit that  time and space increments (At and Ax) approach zero. The results from the limited case 
study can be applied, with some modification, for the cases where these increments are finite. I n  addition, a numerical 
method of solving the Euler equations is discussed. The discussion is facilitated, merely for the sake of simplicity, 
by choosing a linear advection equation as a dgnamical constraint. However, the discussion can bc applied t o  morc 
complicated and realistic cases. 

1. INTRODUCTION 

The variational method, first used by the author in 
objective analysis (1958), seems to show some promise 
for optimizing observed values under certain subsidiary 
conditions. In  the 1958 article, diagnostic equations such 
as the geostrophic, thermal wind, and balance equations 
were used as the subsidiary conditions for minimizing the 
variance of the difference between the observations and 
the analyzed fields. 

Recently, the author (1969a, 19693, 1970a) extended 
the analysis method to use prognostic equations as sub- 
sidiary conditions. The extension is demonstrated by using 
the simple linear advection equation and the diffusion 
equation as examples. It can be applied for sets of com- 
plicated prognostic equations. The variational formalism 
used in these articles is essentially written as 

6J=6 77 7, { z z ( c p z - - ~ ) 2 + ~ t ( ~ t ~ t ) 2 } = 0  (1) n i  

where 6 is the variational operator, J is the functional, 
pi is the analyzed field, Zi is the observation, V ,  is the 
local change in a finite-difference form, Zi and at are 
predetermined weights, and $2 is the domain in time t 
and space xl, xz, x3. The first term in the functional is a 
condition used for minimizing the variance of the dif- 
ference between observed dnd analyzed values. The 
second term is a simple low-pass filter in frequency. This. 

equation is solved with dynamical constraints such as 
those given by the primitive equations. One of these 
constraints may be written as 

v1 pz=Ft(pz, p J ,  V x k ’ P t ,  vx#cP,) (2) 

where F,  is a given function and v x k  represents the space 
derivative with respect to x k  (k=1 ,2 ,3 ) .  The functional 
(1) is in a quadratic form so that the stationary value 
of J becomes the minimum. Solution of pi is obtained by 
solving the Euler equations derived from eq (1) after 
substitution of eq ( 2 )  into eq (1). The advantage in this 
formalism is its mathematical simplicity, although some 
tedious mathematical manipulation is required in de- 
riving and solving the Euler or Euler-Lagrange equation. 
The disadvantage is that the formalism is only for an 
instantaneous field and the functional does not describe 
explicitly the time variations. 

The above disadvantage can be overcome easily by 
taking the following approaches. The first is an orthodox 
approach and is written as 

where Gi represents a prognostic or diagnostic equation 
and X i  is the Lagrange multiplier. (Derivation of the field 
equations of the atmospheric motion can be made by 
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finding the stationary value of the Lagrangian T (kinetic 
energy)-V (potential energy) instead of Zt(pf-Zf)2 under 
the subsidiary conditions of continuity and adiabatic 
processes, Sasaki 1955.) The Euler equations derived from 
eq (3) wil l  include Vlpl and Vlhf. This approach, however, 
requires a considerable amount of effort for numerically 
obtaining the solution of the Euler equations. 

The other approach is relatively simple but seems 
versatile. It uses the variational formalism written in the 
form 

(4) 

where ad is a predetermined weight. This approach is used 
by the author (1970b) and by Thompson (1969) for sur- 
face network data analysis. It should be noted that 
G is linear in eq (3) and quadratic in eq (4) and also that 
the coefficient of the G term is the Lagrange multiplier 
in eq (3) but the weight in (4). These differences result 
in different equations: 

from (3) G=O (5) 

from (4) GGQ. (6) 
and 

For convenience, eq (3) that leads to eq (5) is called the 
formalism with “strong constraint”; and eq (4) that re- 
sults in eq (6) is called the formalism with “weak con- 
straint.” The definition of constraint is broader than 
usual. 

Some simple low-pass filter terms such as (Vlpf)2 for 
frequency and (V,Kp)2 for wave number are useful in 
filtering out undesired noises. These terms are optional 
and may be added to the functionals in eq (3) and (4). 

The subsequent chapters will be devoted to discussion 
of the variational formalisms of three types, namely 
eq (l), (3), and (4). For convenience, a simple linear 
advection equation is used as an example. The books of 
Courant and Hilbert (1953, 1962) are mainly used for the 
mathematical aspects of this study. 

2. TIMEWISE LOCALIZED FORMALISM 

A brief review of the variational formalism expressed by 
eq (1) and (2) is given in this chapter. For simplicity, 
the following linear advection equation is used as the 
constraint (2): 

vI~+c2v&=o (7) 

where c, is assumed constant and the finite-difference 
operators V, and V, are defined as 

and 
Vi+l-9f-l. 

2Ax V#= (9) 

The nth time level and the i th grid point are represented 

by the subscripts n and i, respectively; At, is the time 
increment; and Ax is the grid distance. 

The variational formalism (1) is written as follows for 
the case of linear advection: 

Substitution of Vgp from eg (7) into eq (Io) results in 

Applying the 6 operator, eq (1 1) becomes 

Further manipulation requires the following commuta- 
tion equation : 

c c €Vq=-Z1 c qV5 0 3 )  

where 5 and q are arbitrary functiohs and V represents 
either V, or V,. The proof of eq (13) is given in the au- 
thor’s article (1969b). Using eq (13), eq (12) becomes 

Z t  I t  

where 6p is assumed to vanish at  the boundary. For eq 
(14) to become valid for any arbitrary value of 6p, { ] 
is required to vanish so that 

which is called the Euler or Euler-Lagrange equation. 
This one-dimensional equation can be solved as a boundary 
problem. 

For convenience, the range of z is taken as - <z< Q) , 
and At and Ax are assumed to be infinitesimal. If the 
observed field is expressed by a simple harmonic as 

the particular solution is given by 

The analyzed pattern is also the same harmonic wave 
except that the amplitude is reduced. The ratio between 
the analyzed and the observed values becomes 

where v is the frequency. It is seen easily from this result 
that the ratio r decreases monotonically as k increases. 
That is, the higher the frequency, the more damping 
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takes place, which of course is generally a desirable 
feature for most analysis methods. If A x  is finite, the filter- 
ing characteristics will change for high frequencies near the 
Nyquist frequency. The behavior of r for the case of a 
finite-difference analog is discussed in the author's 
article (1970b). 

The above discussion can be extended easily to  multi- 
dimensional problems. In  the case of two dimensions, for 
instance, the dynamical constraint may be taken as 

v I cp+ CZVZcp+ c,vycp=o (19) 

where c, is the velocity component in the y direction and 
Vu is a finite-difference analog of did,, similar to V,. The 
Euler equation for this case becomes 

If A x  and Ay+O, (19) is a differential equation of the 
parabolic type. The charwteristics are real but degenerate 
to one as expressed by 

The line orthogonal to  the characteristic line E is not 
characteristic but is written as 

The Euler eq (20) can be rewritten in the following form 
by the coordinate transformation from (2 ,  y) to (t,~) as 

Therefore, it is easily seen that a unique solution can be 
obtained if the characteristic lines (varying E )  densely 
cover the domain of consideration without leaving any 
empty space and if two conditions for cp are given at  one 
or two end points of each characteristic line (fig. 1). Some 
similar and more detailed discussions on uniqueness of 
solution will appear again in the subsequent section 
where t behaves as y in eq (20). If we consider t as y in 
figures 2(a) and 2(b), the figures illustrate the essence of 
the above discussion. 

3. VARIATIONAL FORMALISM 
WITH STRONG CONSTRAINT 

The variational formalism (3)  for a simple linear 
advection equation in a (1-2) pla.ne is written as 

where c, is assumed constant. The variational operator 6 

is applied to p and h such that 

6 J=  c c { 2; ( c p 4  1 &+ Mv &+CzV,zScp) 
x t  

+~~(vccp+~,vz,cp) 1 =o. (25) 

When one uses the commutation eq (13), eq (25) 
becomes 

The last two terms are concerned only with the values 
at  the boundary. If they vanish, the Euler equations are 
written, setting the coefficients of the first two terms on 
the right-hand side of eq (26) equal to zero, that is, 

2~Ccp-?)-(v,+c,v,)x=o (27) 

(v ,  +c,v,)cO=O. (28) 
and 

We are interested in optimizing the initial value of cp;  
hence, it is desired that 6cp not be zero at  the initial time. 
Satisfying this requirement is the condition 

[h1,=t1=0, [X],=,,=O. (29) 

These are called natural boundary conditions. However, 
it is not allowable to give the value of h on a closed 
boundary, as will be seen in subsequent discussion. For 
simplicity, we consider x1 and x2 to be --CD and +a, 
respectively. The boundary condition is then assumed as 

[@lz,+m =O, [&I,,+- m = O -  (30) 

These boundary conditions do not violate the condition 
required for the uniqueness of the solution, as the charac- 
teristics with the boundary conditions (29) densely cover 
the domain of consideration as seen in figure 2(a). 

Some general discussion will be given here, first on the 
uniqueness of solutions on the basis of the theory of 
characteristics. For simplicity, the following discussion is 
given for the case where At+O and Ax+O. The parabolic 
type is characterized by a group of degenerated charac- 
teristic base curves. The curves are denoted by a set of E 
in figure 1. When the boundary conditions are given a t  
all of the end points on the curves, a solution is uniquely 
determined. However, if the boundary is closed, a segment 
of the boundary becomes parallel to a characteristic 
curve in the immediate neighborhood of the segment. At 
least two of these segments exist on a closed boundary for 
the parabolic type. They are illustrated by the dotted 
curve in figure 1. If the boundary condition is given on 
these segments, the problem becomes an overspecified one. 

In the present case, the characteristics are a set of lines 
given by [ = ( x / e Z ) - t ,  as illustrated in figure 2, since 
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FIGURE 1.-Characteristic curves and boundary condition in 
parabolic type. 

cz is a constant. The elements of the set are infinite, as the 
value of .$ varies infinitely. The lines normal to the char- 
acteristic lines that are given by a set of v( = (z/c,) +t) are 
also shown in figure 2. Using these new variables, .$ and 
9, one may write eq (27) and (28) in the form 

and 

Eliminating cp from these equations, one obtains 

(33) 
M 

V:h= -;VvQ. 

This is a parabolic type of second-order differential 
equation if V, is considered to be a differential instead of a 
finite-difference form. The characteristics are real but 
degenerate. The necessary and sufficient conditions for a 
unique solution are obtained if two conditions on X are 
given on one or two end points, that is, the boundary or 
initial condition. This nature'is similar to that for the 
boundary value problem of the elliptic type, but an 
essential difference is that the. characteristics are real 
although degenerated. When cz is infinite] f = t  and the 
characteristic line, t=constant, become parallel to  the z 
coordinate. However, cz is usually bound within a certain 
range of magnitudes, and the characteristics never become 
parallel to  the x coordinate. Therefore, boundary con- 
ditions on tl and t2 will not upset the uniqueness of solution, 
but those on x 1  and 2 2  might. Therefore] it is probably 
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FIGURE 2.--Characteristic lines and uniqueness of solution. 

desirable to assume a set of boundary conditions similar to 
those given by eq (29) and (30). 

is 
expressed by a simple harmonic wave 

Let us consider the case where the observed field 

* 
?=a COS k(x-'&t) (34) 

where k is the wave number, Tz is the phase velocity, and 
5 is the amplitude. Eliminating cp from eq (27) and (28)) 
one can relate to as follows: 

The general solution of eq (35) at the limit where 
At+O and As+O is 

where F and G are arbitrary functions of x-cz t  and E is 
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a function that satisfies 

(37) 

For satisfying the boundary condition (29), E, F, and G 
are chosen in such a way that 

where A and B are given by, taking tl= 0 and t2= T, 

A= "' sin k(Z,-c,)T 
~(Z,--C,) T 

(39) 

and 

Finally, cp is obtained by substituting eq (34) and (38) into 
(27) as 

Y 

cp= a sin k(Z,-c,)T cos k(x-c,t) 
k ( 'Zz- c,) T 

Y 

(l-cos k(?,-c,)T) sin k(x-c,t). (41) a 
k (  Z, -c,) T + 

It is interesting to analyze the behavior of eq (41) for some 
special cases. If ~ , + 7 ~ ,  cp becomes 

Y 

cp=+ COS k(X-Z,t). (42) 

This means that the analyzed field is identical to the ob- 
served field ;. When ( T Z - c Z )  and k are bound andTis taken 
sufficiently small, cp is given in an asymptotic form 

cp=Z COS k(x-~,t)+Z [k(~z-~ , )T+O(k2( ' ; . , -~~)z~z)]  
X sin k(x-c,t). (43) 

The first, cosine term is similar to eq (34) except that c2 
instead of 7, appears in this term. It is a result of the 
constraint. The sine term also appears in this case as a 
requirement for minimizing (cp- ;)z as well as satisfying 
the dynamical constraint. This term is a correction term 
whose magnitude is proportional to ' the magnitude of 
the observed field 8, wave number k ,  time period T,  and 
the difference between Z, and c2. The correction term 
is orthogonal to the observation. Also, it  does not vanish 
at  t=O. The term denoted by 0 in the second term is of 
higher order. 

4. VARIATIONAL FORMALISM 
WITH WEAK CONSTRAINT 

The basic concept of the variational formalism with 
weak constraint is demonstrated by the example in eq (4). 

Again considering a simple linear advection equation as 
constraint, eq (4) is written as 

where 2; and CY are prespecitied weights. The Euler equation 
of eq (44) is 

Z(cp-8) - 4 V t  +c,v*) (Vt+~,Vz)cp=O. (45) 

At the limit that At and Ax approach zero, eq (45) becomes 
the partial differential equation of parabolic type. As 
discussed in sections 2 and 3, the unique solution of 
eq (45) can be obtained when the domain of interest is 
covered by the characteristic lines and two conditions for 
cp are given at  one or two ends of each characteristic line. 

If the observed field ; is to be given by eq (34), the 
particular solution of eq (45) at the limit At+O and 
Ax+O becomes 

' 

and the ratio between cp and is given by 

Y 

<1. CY r= z +ai?( z,- C,) 2 - (47) 

A comparison of this ratio with the ratio shown in eq (18) 
reveals that the case of a weak constraint has less power 
as a low-pass filter because no filtering action will occur 
when c, equals ZZ. This result is similar to that of the case of 
strong constraint. It is, however, desirable to filter the 
disturbances of high wave numbers and high frequencies 
even if Z2 is equal to c2. Some simple auxiliary low-pass 
filters that perform this service are discussed in the next 
sections. 

5. SIMPLE LOW-PASS FILTERS 

From the author's previous experiences in analysis of 
actual data by the variational method, it was found that 
adding simple low-pass fdter terms to the functionals was 
helpful in obtaining converging solutions with less 
computer time. Also, it gives better results in data-sparse 
areas (such as over the ocean) and in noisy data areas 
(such as surface networks). 

Some simple low-pass filters are given by the terms 
o~,(V,cp)~ for filtering high frequencies and C Y , ~ ( V , ~ ~ ~ ) ~  for 
filtering high wave numbers. The coefficients at  and 
(Yzk are simply weights, not Lagrange multipliers. 

VARIATIONAL FORMALISM (1 0) 

The functional (10) already has the low-pass filter for 
frequency ~~(v~cp)2; and as seen from eq (18), high fre- 
quencies are suppressed. It is important to give special 
attention to  the fact that the low-pass filter (V2kcp)2 
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changes the Euler equation from the parabolic type to  the 
elliptic type in two-dimensional and three-dimensional 
cases. Adding a,L(V,Lcp)2 to  the right-hand side of eq (lo), 
the Euler equation similar to eq (20 )  can be derived as 

At the limit that At, Ax, and Ay+O, the above equation 
becomes a partial differential equation of the elliptic type 
because the characteristic condition 

A= 4ol“~,”~,”-4(a+a,)~t(a+a~)~,2 

=-4 [~(~z+au>+a,~lC,2C,2<0.  (49) 

This characteristic has proven to be quite helpful in 
obtaining a unique solution by a numerical method. 
Behavior of another auxiliary term (V,U+V,V)~,  which 
was used by the author (1969a), is also similar. 

FORMALISM (24) 

Addition of the low-pass filter terms enables one to 
write eq (24 )  in the form 

After using the commutation eq (13), eq (50) becomes 

The Euler equations are 

2 ( ~ + a t V ~ + ~ , V ” , ~ - 2 ~ ~ - ( V t + c z V z ) X = 0  (52) 

(v, +c2v,)(O=O. (53) 

From these, the equation for A, which is the same as eq 
(35), is obtained as 

and 

The 
(29) 

and 

(Vr+c,Vz) (vt+czv,)x= - ~ ( V ’ + C Z V Z ) F .  (54) 

boundary conditions are taken in a way similar to  eq 
a.nd (30) as 

[~+~,v,cplpl=o.T=o (55) 

[SQE-t -m,  + m = Q *  (56) 

The general solution of eq (54) a t  the limit A t 4 0  and 
Ax-0 for the case of eq (34) is given by eq (36), namely, 

+ E ( s , t ) F ( z - c , t )  +Q(s-c,t>. (57)  

Substitution of eq (57) into (52) yields 

2(G +atV;+a,V;)cp= F(x-c , t ) .  (58) 

As a general form of F and G, we will consider 

and 
F=A cos k(x-c , t )+B sin k(x-c , t )  (59) 

(60) 

where A, B, C, and D are the constants to  be determined 
later by the boundary conditions. The general solution 
of eq (58) is then given by 

G=C COS k(X-c,t) +D sin k ( ~ - ~ , t )  

[ A  cos k(x-c , t )+B sink(x-c,t)]+$ 

(61) 

1 
2 (Z+ark2c,2+a,k2) cp= 

where $ is the solution of the homogeneous part of eq 
(58), that is, (Z+ar,V?+a,V?J$=O. However, $ does 
not satisfy eq (53); therefore, cp should vanish. Substi- 
tuting eq (57) and (61) into eq (55), we get at  t=O, 

A 

and a t  t = T ,  

sin k(X-? ,T)+T(A COS k(x-c ,T)  2 z  
k(  r - e,) 

+B sin k ( x - c , T ) ) + C  cos k ( s - c , T ) + D  sin k(x-c ,T)  
2a ,kc ,A 

2(Z+aar,k2c2, +a,k2) 
sin k(x  -c ,  T )  + 

Or, a t  t = Q ,  after setting coefficients of cos kx  and sin kx  
to be zero, 

and 

and at  t=T, 

sin k & T + A T  cos kc ,T-BT sin kc,T 2a@ 
k(  ?, -c,) 

- 
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and 

"' cos kZ,T+ AT sin kczT+ BT cos kc,T 
k(&--CZ) 

A cos kc,T atkc, 
(G +atk2c,2+azk2) 

+ C sin kc,T+ D cos kczT+ 

B sin kc,T=O. (65) - dG! 
(E+atk2c,2+aZk2) 

The constants A, B, C, and D are determined from the 
above four equations. Substituting C and D obtained 
from eq (62) and (63) into eq (64) and (65), we get 

T COS kc,T A- T sin kczT B 

(sin kZ,',T-sin kc,T)=O (66) 2 z  
k ( & - d  

- 

and 

T sin kczT * A+T COS kczT B 

(COS kZ,T-cos kczT)=O. (67) 2 z  
k(  2- 

+ 
From eq (66) and (67), 

.. 

sin k(F,-c,)T 2a 9 
k(Zz--Cz) T 

A= 

and 

Therefore, the analyzed field cp is obtained as 
w-  

a9  
(Z+atk2c~+azu,k2) k (ZZ-cz)T cp' { sin k(Z,-c,)T cos k(x-c,t) 

+[1-cos k(.?,-c,)T] sin k(x-cz t )} .  (70) 

Comparing this solution with eq (41), we observe that the 
analyzed field with the low-pass filter differs from that 
without the filter by reducing the amplitude by the 
factor T: 

r=Z/(G +a, k2c%+azk2). (71) 

I t  is interesting to note that the type of differential 
equation a t  the limit At, Ax+O remains essentially the 
same by addition of the low-pass filter terms. 

FORMALISM (44) 

Addition of the low-pass filters to eq (44) yields 

and the Euler equation becomes 

which is, unless at and a, both vanish, an elliptic equation 
at  the limit, At+O and Ax+O, since the characteristic 
condition 

ff2c,2- (ff+ff,) (ff+a&:<o. (74) 

When 7 is given by eq (34) , the analyzed field cp is obtained 
as 

and the reduction factor becomes 

6. A NUMERICAL METHOD 

Numerical solutions of the Euler eq (48) and (73) are, 
in general, obtained by a method of iteration. Convergence 
to a solution is usually accelerated by the addition of the 
low-pass filters suggested in this article. Some further 
discussion will be given on the numerical solution of the 
Euler eq (27) and (28). 

The Euler eq (27) and (28) may be solved by iterative 
uses of the marching process (proposed by Miyakoda and 
Moyer 1968) until the values at  the end of the prediction 
approach those required from the boundary condition 
t=T. However, a major difficulty can arise in obtaining 
the unique solution of a differential equation of the para- 
bolic type. A discontinuity can appear in the direction, 
q=constant, which is normal to the characteristic lines 
represented by 5,  as seen in figures 1 and 2. This difficulty 
is also seen in eq (31), (32), and (33) ; that is, derivatives A,, 
and Ai are defined, but Vt and Vi do not appear in the gov- 
erning equations. Thus the solution is uncertain and not 
unique in these derivatives. The difficulty can be well 
demonstrated in figure 2(b). If X is given on the boundary 
abed, the condition becomes overspecified. The boundary 
line is not unique especially at  the corners a and c and can 
be parallel to the characteristic lines in the neighborhood 
of the corners. Therefore, as discussed before, X can not be 
given on the entire boundary abcd. If X is only given on bc 
and a d ,  the solution is uniquely determined in the sub- 
domain C, but can not be determined in the subdomain A 
because one boundary condition of is missing on the 
characteristic lines which run in the domain A. 

To solve the above difficulty, we now consider a prac- 
tical approach that uses expansion of the solution in a 
series of periodical orthogonal functions such as the 
Fourier series. The coefficients of the series are determined 
from the values in the region x1<x<x2 but gives the 
values in the regions, -rn<x<xl and x 2 1 x < ~ ,  due to 
the periodicity of the functions. The Fourier series expres- 

- 

- - 
- 
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sions for A, 'p, and are written as 

(77) 

where the subscript m is omitted for convenience. Pf we 
can find the value of W that satisfies the relationship 

where m is an integer, the coefficients Am, am, and z m  are eq (86) becomes the finite-difference equation containing 
complex variables and functions of time and k is the wave the unknown variable M and its second derivative 
number defined as k=21rm/L. In  the following discussion, V t V , M  without the term V , M .  However, the solution 
A t  andAx are finite. of eq (87) is not easily obtained due to the presence of 

Substitution of the expansion into eq (27) and ( 2 8 )  V,% and V , M ,  which are not identical. 
leads to  

T o  overcome this diflticulty, an attempt is made to define 
~ ( Q i , - ~ m ) - ( V t + i C z e z ) A m = O  (78) the new finite-difference derivative 

and 
(79) 

where cz=sin kAx/Az. By eliminating 9, from these two 
equations, we can derive a finite-difference equation con- 
cerning one unknown variable A, as 

We can derive a formula similar to eq ( 8 2 )  as 

With this equation, however, it is inadequate to  use a 
relatively simple and common method of relaxation, such 
as the Richardson or Liebman method or the alternating 
direction method, to get an iterative solution because the 
spectral radius of the amplification matrix exceeds one. 
This difficulty is due to the second term on the left-hand 
side of eq (80). To avoid this difficulty, we express Am 
by a product of two new variables as 

Am = MmNm . (81) 

The following symmetric formulas are useful to further 
manipulate the finite-difference eq (80), 

otfrl=5otrl+?jVtt. (82) 

where 4 and q are variables and 

A 

where ( ) is defined as 

In  eq (86), V z V t  is replaced by V,V,, although this causes 
inconsistency. However, this inconsistency may not be 
serious because the substitution lessens the truncation 
error in the second derivative. The first derivative term in 
eq (86) remains the same. Consequently, we can rewrite eq 
(86) in the form 

+ ~ ( v ~ N + ~ c ~ ~ ~ ; " S ) V ~ M = F ;  (9 1) 

(-I=[( )n+1+( >n-11/2. (83) and corresponding to eq (87), we can obtain 

Proof of eq (82) is easily given as 

2At 
= rl,+lV,E+t,-lVtrl. 

If we assume for simplicity that No a t  the initial time is 
equal to one and Nl is derived from (84) 

Similarly, 

vttrl = rl,-lVtt+En+lVtrl. (85) (94) 

Then by taking the average of eq (84) and (85), we can 
derive eq (82). 

Substitution of eq (81) into eq (80) with the aid of 
eq (82) results in 

we can obtain N ,  for n=2, 3, , . . by eq (93). (This is 
equivalent to  an implicit scheme for solving an advection 
equation.) Since N,  should always be a nonzero constant, 
we may set the following condition for A z  and Ax as 

Ax 
At -->CZ. (95) 
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Finally, eq (91) becomes 

This equation can be solved with respect to M by using 
a simple relaxation method under the boundary condition 

(M)n=o= (2M),,,=O (97) 

where N is the final time level. After M is solved, Am is 
obtained from eq (81), and the solution @m can be easily 
calculated from eq (78). The method proposed in this 
section may be applied for more complicated cases, for 
example, using the primitive equations as constraints. 
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